อะไร คือ ชี้แจง ถัว เฉลี่ยเคลื่อนที่


ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักที่เป็นตัวเลข (Expedential Weighted Moving Average - EWMA) เป็นสถิติสำหรับการตรวจสอบกระบวนการที่ใช้ข้อมูลโดยเฉลี่ยในลักษณะที่ให้น้ำหนักน้อยและน้อยกว่าเมื่อนำข้อมูลออกไปในเวลาต่อไป การเปรียบเทียบแผนภูมิควบคุม Shewhart และเทคนิคการควบคุม EWMA สำหรับเทคนิค Shewhart chart control การตัดสินใจเกี่ยวกับสถานะของการควบคุมกระบวนการนี้ได้ตลอดเวลา (t) ขึ้นอยู่กับการวัดล่าสุดจากกระบวนการนี้และแน่นอนว่า ระดับของความเป็นเลิศของการประมาณขีด จำกัด การควบคุมจากข้อมูลทางประวัติศาสตร์ สำหรับเทคนิคการควบคุม EWMA การตัดสินใจจะขึ้นอยู่กับสถิติ EWMA ซึ่งเป็นค่าเฉลี่ยถ่วงน้ำหนักแบบทวีคูณของข้อมูลทั้งหมดรวมทั้งการวัดล่าสุด การเลือกขั้นตอนการควบคุม EWMA สามารถทำให้เกิดความรู้สึกไวต่อการล่องลอยในขั้นตอนเล็ก ๆ หรือทีละขั้นขณะที่ขั้นตอนการควบคุม Shewhart สามารถตอบสนองได้เฉพาะเมื่อจุดข้อมูลล่าสุดอยู่นอกขีด จำกัด การควบคุมเท่านั้น ความหมายของ EWMA สถิติที่คำนวณได้คือ: mbox t lambda Yt (1-lambda) mbox ,,, mbox ,,, t 1,, 2,, ldots ,, n (mbox 0) คือค่าเฉลี่ยของข้อมูลทางประวัติศาสตร์ (เป้าหมาย) (Yt) คือการสังเกตการณ์ในเวลา (t) (n) คือจำนวนของการสังเกตการณ์ที่ต้องติดตามรวมทั้ง (mbox 0) (0 การตีความของแผนภูมิการควบคุม EWMA สีแดง จุดเป็นข้อมูลดิบที่เส้นขรุขระเป็นสถิติ EWMA เมื่อเวลาผ่านไปแผนภูมิบอกเราว่ากระบวนการนี้อยู่ในการควบคุมเพราะทั้งหมด (mbox t) อยู่ระหว่างข้อ จำกัด ของการควบคุมอย่างไรก็ตามดูเหมือนว่าจะมีแนวโน้มสูงขึ้นในช่วง 5 periods. What คือแผนภูมิ EWMA แผนภูมิ EWMA คืออะไรแผนภูมิควบคุม EWMA เป็นแผนภูมิควบคุมเวลาที่ใช้คำนวณค่าเฉลี่ยถ่วงน้ำหนักแบบเลขยกกำลังแผนภูมิ EWMA เหมาะอย่างยิ่งสำหรับการตรวจสอบกระบวนการที่แสดงค่าเฉลี่ยลอยอยู่ตลอดเวลาหรือสำหรับการตรวจจับ การเปลี่ยนแปลงเล็ก ๆ น้อย ๆ ในกระบวนการตัวอย่างเช่นแผนภูมิ EWMA สามารถช่วยตรวจจับการล่องลอยที่เกิดจากการสึกหรอของเครื่องมือตัวอย่างเช่นแผนภูมิ EWMA ผู้ผลิตโรเตอร์แบบหมุนเหวี่ยงต้องการติดตามเส้นผ่าศูนย์กลางของใบพัดทั้งหมดที่ผลิตในช่วงสัปดาห์เส้นผ่าศูนย์กลางต้องเป็น ใกล้เคียงกับเป้าหมายเพราะแม้แต่ กะขนาดเล็กทำให้เกิดปัญหา แผนภูมิ EWMA จุดอยู่ภายในขอบเขตการควบคุม ไม่มีแนวโน้มหรือรูปแบบที่แสดง เส้นผ่านศูนย์กลางใบพัดมีเสถียรภาพ จุดที่วางแผนขึ้นอยู่กับพล็อตจุดสามารถขึ้นอยู่กับกลุ่มย่อยหรือการสังเกตการณ์แต่ละ เมื่อข้อมูลอยู่ในกลุ่มย่อยค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักแบบยกกำลังคำนวณจากกลุ่มย่อย เมื่อคุณทำพล็อตการสังเกตแต่ละข้อคำนวณค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบยกกำลังคำนวณจากการสังเกตแต่ละครั้ง ช่วงการย้ายมีความยาว 2 เนื่องจากจุดติดต่อกันมีโอกาสสูงที่สุดในการเป็นเหมือนกัน คุณยังสามารถเปลี่ยนความยาวของช่วงการเคลื่อนที่ แนวทางในการเลือกน้ำหนักสำหรับแผนภูมิ EWMA การคำนวณสำหรับแต่ละจุดในแผนภูมิ EWMA ประกอบด้วยข้อมูลจากจุดก่อนหน้า จุดมีการถ่วงน้ำหนักขึ้นอยู่กับปัจจัยการถ่วงน้ำหนักที่ผู้ใช้ระบุ ประโยชน์ของแผนภูมิ EWMA คือพวกเขาไม่ได้รับผลกระทบอย่างมากเมื่อมีค่าขนาดเล็กหรือขนาดใหญ่เข้าสู่การคำนวณ โดยการเปลี่ยนน้ำหนัก (เรียกอีกอย่างว่า lambda หรือ) และความกว้างของขีด จำกัด การควบคุมคุณสามารถตรวจจับการเปลี่ยนแปลงของเกือบทุกขนาด ด้วยเหตุนี้แผนภูมิ EWMA มักใช้ในการตรวจสอบกระบวนการควบคุมในการกะขนาดเล็กที่ห่างจากเป้าหมาย โดยปกติคุณใช้น้ำหนักที่มีขนาดเล็กเพื่อตรวจหาการเลื่อนที่เล็กลง ตัวอย่างเช่นน้ำหนักระหว่าง 0.05 ถึง 0.25 ทำงานได้ดี ระบุความกว้างของขีด จำกัด ของการควบคุมโดยค่าเริ่มต้นขีด จำกัด การควบคุม Minitabs จะแสดงค่าเบี่ยงเบนมาตรฐาน 3 ด้านเหนือและใต้เส้นศูนย์ หากต้องการเปลี่ยนความกว้างของขีด จำกัด การควบคุมสำหรับแผนภูมิให้ทำดังนี้: เลือกแผนภูมิการควบคุม gt gt สถิติ gt แผนภูมิที่มีการคำนวณเวลา gt EWMA คลิกตัวเลือก EWMA จากนั้นคลิกแท็บการทดสอบ ภายใต้ K. เปลี่ยนค่า 1 จุดมากกว่า K เบี่ยงเบนมาตรฐานจากเส้นกึ่งกลาง เกี่ยวกับกลุ่มย่อยที่ขาดหายไปหมายถึงข้อความในการสร้างแผนภูมิ EWMA คุณต้องมีการสังเกตอย่างน้อยหนึ่งข้อในกลุ่มย่อยทุกๆกลุ่ม หากคุณมีกลุ่มย่อยที่มีข้อสังเกตทั้งหมดหายไป Minitab จะแสดงข้อผิดพลาดและไม่สร้างแผนภูมิค่าเฉลี่ยเคลื่อนที่ที่เป็นตัวบ่งชี้ - EMA BREAKING DOWN ค่าเฉลี่ยการเคลื่อนที่แบบ Exponential - EMA EMA 12 และ 26 วันเป็นระยะสั้นที่ได้รับความนิยมมากที่สุด และใช้เป็นตัวบ่งชี้เช่น MACD (Divergence Divergence Average Average Moving Divergence - MACD) และ Poscillator Price Oscillator (PPO) โดยทั่วไปแล้ว EMA 50 และ 200 วันใช้เป็นสัญญาณของแนวโน้มในระยะยาว ผู้ค้าที่ใช้การวิเคราะห์ทางเทคนิคพบค่าเฉลี่ยเคลื่อนที่ที่มีประโยชน์และลึกซึ้งเมื่อใช้อย่างถูกต้อง แต่สร้างความหายนะเมื่อใช้ไม่ถูกต้องหรือถูกตีความผิด ค่าเฉลี่ยเคลื่อนที่ทั้งหมดที่ใช้กันโดยทั่วไปในการวิเคราะห์ทางเทคนิคเป็นไปตามลักษณะของตัวชี้วัดที่ล่าช้า ดังนั้นข้อสรุปที่ได้จากการนำค่าเฉลี่ยเคลื่อนที่ไปเป็นกราฟตลาดหนึ่ง ๆ ควรเป็นการยืนยันการเคลื่อนไหวของตลาดหรือเพื่อบ่งชี้ถึงความแข็งแกร่ง บ่อยครั้งเมื่อถึงเวลาที่เส้นค่าเฉลี่ยเคลื่อนไหวได้เปลี่ยนไปเพื่อสะท้อนการเคลื่อนไหวที่สำคัญในตลาดจุดที่เหมาะสมที่สุดของการเข้าสู่ตลาดได้ผ่านไปแล้ว EMA ช่วยลดปัญหานี้ได้บ้าง เนื่องจากการคำนวณ EMA ให้น้ำหนักมากขึ้นกับข้อมูลล่าสุดจึงทำให้การดำเนินการด้านราคาแย่ลงและตอบสนองได้เร็วขึ้น นี่เป็นที่พึงปรารถนาเมื่อใช้ EMA เพื่อรับสัญญาณการซื้อขาย การตีความ EMA เช่นเดียวกับตัวบ่งชี้ค่าเฉลี่ยเคลื่อนที่ทั้งหมดพวกเขาจะเหมาะกับตลาดที่มีแนวโน้มมากขึ้น เมื่อตลาดอยู่ในขาขึ้นที่แข็งแกร่งและยั่งยืน เส้นแสดงตัวบ่งชี้ EMA จะแสดงแนวโน้มขาขึ้นและทางกลับกันสำหรับแนวโน้มขาลง ผู้ค้าระมัดระวังจะไม่เพียง แต่ใส่ใจกับทิศทางของเส้น EMA แต่ยังสัมพันธ์ของอัตราการเปลี่ยนแปลงจากแถบหนึ่งไปอีก ตัวอย่างเช่นในขณะที่การดำเนินการตามราคาของขาขึ้นที่แข็งแกร่งจะเริ่มแผ่ออกและพลิกกลับอัตราการเปลี่ยนแปลงของ EMA จากแถบหนึ่งไปยังอีกส่วนหนึ่งจะเริ่มลดลงไปจนกว่าจะถึงเวลาดังกล่าวที่บรรทัดตัวบ่งชี้จะราบเรียบและอัตราการเปลี่ยนแปลงเป็นศูนย์ เนื่องจากผลกระทบที่ปกคลุมด้วยวัตถุฉนวนถึงจุดนี้หรือแม้กระทั่งไม่กี่บาร์ก่อนการดำเนินการด้านราคาน่าจะได้กลับรายการไปแล้ว ดังนั้นจึงเป็นไปได้ว่าการสังเกตการลดอัตราการเปลี่ยนแปลงของ EMA ที่สอดคล้องกันอาจเป็นตัวบ่งชี้ที่สามารถช่วยป้องกันภาวะที่กลืนไม่เข้าคายไม่ออกอันเกิดจากผลกระทบที่เกิดจากการเคลื่อนที่โดยเฉลี่ย การใช้ EMA ทั่วไปของ EMA มักใช้ร่วมกับตัวบ่งชี้อื่น ๆ เพื่อยืนยันการย้ายตลาดที่สำคัญและเพื่อวัดความถูกต้อง สำหรับผู้ค้าที่ค้าขายระหว่างวันและตลาดที่เคลื่อนไหวอย่างรวดเร็ว EMA จะสามารถใช้งานได้มากขึ้น ผู้ค้ามักใช้ EMA เพื่อหาอคติในการซื้อขาย ตัวอย่างเช่นหาก EMA ในแผนภูมิรายวันแสดงให้เห็นถึงแนวโน้มที่แข็งแกร่งขึ้นกลยุทธ์การค้าระหว่างวันอาจเป็นการค้าเฉพาะจากด้านยาวบนแผนภูมิระหว่างวันการสำรวจความถ่วงน้ำหนักโดยเฉลี่ยที่เคลื่อนที่ได้ตามหลักเกณฑ์เชิงปริมาณเป็นมาตรการที่ใช้กันทั่วไปในการวัดความเสี่ยง แต่ มันมาในหลายรสชาติ ในบทความก่อนหน้านี้เราได้แสดงวิธีการคำนวณความผันผวนทางประวัติศาสตร์ที่เรียบง่าย เราใช้ข้อมูลราคาหุ้นที่เกิดขึ้นจริงของ Google เพื่อคำนวณความผันผวนรายวันตามข้อมูลหุ้นภายใน 30 วัน ในบทความนี้เราจะปรับปรุงความผันผวนที่เรียบง่ายและหารือเกี่ยวกับค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบทวีคูณ (EWMA) Historical Vs ความผันแปรเบื้องต้นก่อนอื่นให้วางเมตริกนี้ไว้ในมุมมองเล็กน้อย มีสองแนวทางที่กว้าง: ความผันผวนในอดีตและโดยนัย (หรือโดยนัย) วิธีการทางประวัติศาสตร์สมมติว่าอดีตเป็นคำนำที่เราวัดประวัติศาสตร์ด้วยความหวังว่าจะเป็นการคาดการณ์ ในทางตรงกันข้ามความผันผวนโดยนัยจะละเลยประวัติความเป็นมาซึ่งจะช่วยแก้ปัญหาความผันผวนโดยนัยตามราคาตลาด หวังว่าตลาดจะรู้ได้ดีที่สุดและราคาในตลาดมีแม้กระทั่งโดยนัยประมาณการความผันผวน ถ้าเรามุ่งเน้นไปที่สามวิธีทางประวัติศาสตร์ (ด้านซ้ายด้านบน) พวกเขามีสองขั้นตอนที่เหมือนกัน: คำนวณชุดของผลตอบแทนเป็นระยะ ๆ ใช้สูตรการถ่วงน้ำหนักก่อนอื่นเรา คำนวณผลตอบแทนเป็นระยะ ๆ โดยทั่วไปแล้วผลตอบแทนรายวันจะได้รับผลตอบแทนแต่ละรายการในแง่บวก สำหรับแต่ละวันเราจะบันทึกล็อกอัตราส่วนราคาหุ้น (เช่นราคาในปัจจุบันหารด้วยราคาเมื่อวานนี้เป็นต้น) นี่เป็นการสร้างผลตอบแทนรายวันจำนวนหนึ่งจาก u i to u i-m ขึ้นอยู่กับจำนวนวัน (m วัน) ที่เราวัด ที่ทำให้เราก้าวไปสู่ขั้นตอนที่สอง: นี่คือแนวทางที่แตกต่างกันสามวิธี ในบทความก่อนหน้า (ใช้ความผันผวนเพื่อวัดความเสี่ยงในอนาคต) เราพบว่าภายใต้สอง simplifications ยอมรับความแปรปรวนง่ายคือค่าเฉลี่ยของผลตอบแทนที่เป็นกำลังสอง: ขอให้สังเกตว่าผลรวมนี้แต่ละผลตอบแทนเป็นระยะจากนั้นแบ่งทั้งหมดโดย จำนวนวันหรือสังเกตการณ์ (ม.) ดังนั้นจริงๆมันเป็นเพียงเฉลี่ยของผลตอบแทนเป็นระยะ ๆ squared ใส่อีกวิธีหนึ่งแต่ละยกกำลังสองจะได้รับน้ำหนักเท่ากัน ดังนั้นถ้า alpha (a) เป็นปัจจัยการถ่วงน้ำหนัก (โดยเฉพาะ 1m) ความแปรปรวนแบบง่ายๆมีลักษณะดังนี้: EWMA ช่วยเพิ่มความแปรปรวนอย่างง่ายจุดอ่อนของวิธีนี้คือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน การกลับมาเมื่อวาน (ล่าสุด) ไม่มีอิทธิพลต่อความแปรปรวนมากกว่าผลตอบแทนของเดือนที่ผ่านมา ปัญหานี้ได้รับการแก้ไขโดยใช้ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบทวีคูณ (EWMA) ซึ่งผลตอบแทนที่มากขึ้นล่าสุดมีน้ำหนักมากขึ้นกับความแปรปรวน ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลัง (EWMA) แนะนำ lambda ซึ่งเรียกว่าพารามิเตอร์การให้ราบเรียบ แลมบ์ดาต้องมีค่าน้อยกว่าหนึ่ง ภายใต้เงื่อนไขดังกล่าวแทนที่จะใช้น้ำหนักที่เท่ากันผลตอบแทนที่ได้รับจะเพิ่มขึ้นตามตัวคูณดังนี้ตัวอย่างเช่น RiskMetrics TM ซึ่งเป็น บริษัท บริหารความเสี่ยงทางการเงินมีแนวโน้มที่จะใช้แลมบ์ดาเท่ากับ 0.94 หรือ 94 ในกรณีนี้เป็นครั้งแรก (1-0.94) (. 94) 0 6. ผลตอบแทนที่ได้จะเป็นตัวเลข lambda-multiple ของน้ำหนักก่อนหน้าในกรณีนี้ 6 คูณด้วย 94 5.64 และสามวันก่อนหน้ามีน้ำหนักเท่ากับ (1-0.94) (0.94) 2 5.30 นั่นคือความหมายของเลขยกกำลังใน EWMA: แต่ละน้ำหนักเป็นตัวคูณคงที่ (เช่น lambda ซึ่งต้องน้อยกว่าหนึ่ง) ของน้ำหนักก่อนหน้า เพื่อให้แน่ใจว่ามีความแปรปรวนที่ถ่วงน้ำหนักหรือลำเอียงไปยังข้อมูลล่าสุด (หากต้องการเรียนรู้เพิ่มเติมโปรดดูที่แผ่นงาน Excel สำหรับความผันผวนของ Google) ความแตกต่างระหว่างความผันผวนเพียงอย่างเดียวกับ EWMA สำหรับ Google แสดงไว้ด้านล่าง ความผันผวนอย่างง่ายมีผลต่อการกลับคืนเป็นระยะ ๆ ทุกๆ 0.196 ตามที่แสดงไว้ในคอลัมน์ O (เรามีข้อมูลราคาหุ้นย้อนหลังเป็นเวลา 2 ปีนั่นคือผลตอบแทน 509 วันและ 1509 0.196) แต่สังเกตว่าคอลัมน์ P กำหนดน้ำหนัก 6, 5.64 แล้ว 5.3 และอื่น ๆ Thats ความแตกต่างระหว่างความแปรปรวนง่ายและ EWMA โปรดจำไว้ว่า: หลังจากที่เราสรุปชุดข้อมูลทั้งหมด (ในคอลัมน์ Q) เรามีความแปรปรวนซึ่งเป็นค่าสแควร์ของส่วนเบี่ยงเบนมาตรฐาน ถ้าเราต้องการความผันผวนเราต้องจำไว้ว่าให้ใช้รากที่สองของความแปรปรวนนั้น ความแตกต่างของความแปรปรวนรายวันระหว่างค่าความแปรปรวนและ EWMA ในกรณีของ Google มีความหมาย: ความแปรปรวนง่ายทำให้เรามีความผันผวนรายวันอยู่ที่ 2.4 แต่ EWMA มีความผันผวนรายวันเพียง 1.4 (ดูสเปรดชีตเพื่อดูรายละเอียด) เห็นได้ชัดว่าความผันผวนของ Googles ตกลงไปเมื่อไม่นานมานี้ดังนั้นความแปรปรวนที่เรียบง่ายอาจเป็นจำนวนเทียมสูง ความแปรปรวนวันนี้เป็นฟังก์ชันของความแตกต่างของวัน Pior คุณจะสังเกตเห็นว่าเราจำเป็นต้องคำนวณชุดน้ำหนักลดลงอย่างมาก เราจะไม่ใช้คณิตศาสตร์ที่นี่ แต่คุณลักษณะที่ดีที่สุดของ EWMA คือชุดผลิตภัณฑ์ทั้งหมดสามารถลดสูตร recursive ได้อย่างง่ายดาย: Recursive หมายถึงการอ้างอิงความแปรปรวนในปัจจุบัน (คือฟังก์ชันของความแปรปรวนในวันก่อนหน้า) คุณสามารถหาสูตรนี้ในสเปรดชีตได้ด้วยและจะให้ผลเหมือนกันกับการคำนวณแบบ longhand กล่าวว่าค่าความแปรปรวนวันนี้ (ต่ำกว่า EWMA) เท่ากับความแปรปรวนของ yesterdays (weighted by lambda) บวกกับค่า yesterdays squared return (ชั่งน้ำหนักโดยลบหนึ่งแลมบ์ดา) แจ้งให้เราทราบว่าเรากำลังเพิ่มคำสองคำลงท้ายด้วยกันอย่างไร: ความแปรปรวนที่ถ่วงน้ำหนักในวันอังคารและเมื่อวานถ่วงน้ำหนัก แม้กระนั้นแลมบ์ดาก็คือพารามิเตอร์ที่ราบเรียบของเรา แลมบ์ดาที่สูงขึ้น (เช่น RiskMetrics 94) บ่งชี้การสลายตัวช้าลงในซีรีย์ - ในแง่สัมพัทธ์เราจะมีจุดข้อมูลมากขึ้นในซีรีส์และพวกเขาจะลดลงอย่างช้าๆ ในทางกลับกันถ้าเราลดแลมบ์ดาเราจะบ่งชี้ว่าการสลายตัวที่สูงขึ้น: น้ำหนักจะลดลงอย่างรวดเร็วและเป็นผลโดยตรงจากการผุกร่อนที่รวดเร็วใช้จุดข้อมูลน้อยลง (ในสเปรดชีตแลมบ์ดาเป็นอินพุตเพื่อให้คุณสามารถทดลองกับความไว) ความผันผวนโดยสรุปคือส่วนเบี่ยงเบนมาตรฐานของหุ้นและความเสี่ยงที่พบมากที่สุด นอกจากนี้ยังเป็นรากที่สองของความแปรปรวน เราสามารถวัดความแปรปรวนในอดีตหรือโดยนัย (ความผันผวนโดยนัย) เมื่อวัดในอดีตวิธีที่ง่ายที่สุดคือความแปรปรวนที่เรียบง่าย แต่ความอ่อนแอกับความแปรปรวนที่เรียบง่ายคือผลตอบแทนทั้งหมดจะมีน้ำหนักเท่ากัน ดังนั้นเราจึงต้องเผชิญกับข้อเสียแบบคลาสสิก: เราต้องการข้อมูลเพิ่มเติม แต่ข้อมูลที่เรามีมากขึ้นการคำนวณของเราจะเจือจางด้วยข้อมูลที่อยู่ไกล (ไม่เกี่ยวข้อง) ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักที่ถ่วงน้ำหนัก (EWMA) ช่วยเพิ่มความแปรปรวนอย่างง่ายโดยกำหนดน้ำหนักให้กับผลตอบแทนเป็นงวด เมื่อทำเช่นนี้เราสามารถใช้ตัวอย่างขนาดใหญ่ แต่ยังให้น้ำหนักมากขึ้นกับผลตอบแทนล่าสุด (หากต้องการดูบทแนะนำเกี่ยวกับภาพยนตร์เกี่ยวกับหัวข้อนี้โปรดไปที่ Bionic Turtle) ข้อ 50 เป็นข้อเจรจาและข้อยุติในสนธิสัญญา EU ที่ระบุขั้นตอนที่จะต้องดำเนินการสำหรับประเทศใด ๆ ที่ การเสนอราคาเริ่มต้นของสินทรัพย์ของ บริษัท ที่ล้มละลายจากผู้ซื้อที่สนใจที่ได้รับเลือกโดย บริษัท ที่ล้มละลาย จากกลุ่มผู้เสนอราคา เบต้าเป็นตัวชี้วัดความผันผวนหรือความเสี่ยงอย่างเป็นระบบของการรักษาความปลอดภัยหรือผลงานเมื่อเทียบกับตลาดโดยรวม ประเภทของภาษีที่เรียกเก็บจากเงินทุนที่เกิดจากบุคคลและ บริษัท กำไรจากการลงทุนเป็นผลกำไรที่นักลงทุนลงทุน คำสั่งซื้อความปลอดภัยที่ต่ำกว่าหรือต่ำกว่าราคาที่ระบุ คำสั่งซื้อวงเงินอนุญาตให้ผู้ค้าและนักลงทุนระบุ กฎสรรพากรภายใน (Internal Internal Revenue Service หรือ IRS) ที่อนุญาตให้มีการถอนเงินที่ปลอดจากบัญชี IRA กฎกำหนดให้

Comments